
© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 1/6

Design in
Translation

Software
Kim Sacks

1. Définition du terme importé en français
Le terme de « Sofware », parfois traduit en français par « logiciel », demeure dans certains
contextes employé tel quel en français. La définition qui suit permet de s’en faire une idée
générale de ce que le terme englobe.

« A simple definition of software is that it is the set of instructions that direct a
computer to do a specific task. Every machine has it1. »

Paul E., CERUZZI, A History of Modern Computing – 2nd ed., Cambridge, MA, The MIT Press,
2003, p. 80.

Pour approfondir cette définition succincte, rappelons que l’informatique, les computer
sciences et tous autres domaines associés aux machines computationnelles, séparent les
termes de software et de hardware. Ces deux notions sont intrinsèquement liées et pensées
simultanément tout en donnant lieu à deux définitions autonomes et complémentaires. Cette
scission permet de percevoir les machines en distinguant symboliquement les entités concrètes
(microcontrôleurs, processeurs, RAM etc.) des entités abstraites (programmes, code sources,
algorithmes etc.) Le terme software qualifie l’ensemble de ces entités abstraites. Il se compose
des méthodes, des logiques, des programmes, qui gouvernent les machines. La notion est
souvent, si ce n’est exclusivement, expliqué en relation au hardware, qui sert de fondement
théorique pour circonscrire une définition négative : si le software en lui-même est difficile à
délimiter, il est tout ce que le hardware n’est pas, c’est-à-dire tout ce qui n’est pas strictement
de la matière sensible, concrète. C’est ce que confirme l’occurrence suivante :

« SOFTWARE n.m. est emprunté (1966) à l'argot des ingénieurs américains, formé
plaisamment sur le modèle de hardware « quincaillerie », par opposition de soft
« mou » à hard « dur ». Soft est d'origine germanique (néerlandais zacht). Cet
anglicisme, abrégé en soft n. m. (1971) et entré dans le vocabulaire international
de l'informatique, désigne l'ensemble des moyens d'utilisation, des programmes,
etc., d'un système informatique, par opposition aux éléments matériels.
L'équivalent français logiciel (1972), largement répandu, a pratiquement éliminé
software, mais soft et hard n.m. sont toujours en usage. »

Alain, REY (dir.), Dictionnaire Historique de la langue Française, Paris, Dictionnaires Le

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 2/6

Robert, 1998, t. 3, p. 3535.

En revanche, si nous nous affranchissons des définitions usuelles et des dictionnaires
étymologiques pour explorer les définitions encyclopédiques, nous nous rendons compte que le
terme software ne donne pas lieu à une entrée propre dans l’Encyclopédie Universalis, alors
qu’il est présent dans plusieurs définitions périphériques comme celles de logiciels ou
systèmes d’exploitation. Nous le retrouvons notamment au sein de la définition du mot
ordinateur pour décrire l’architecture von Neumann, soit le modèle des machines dont le
programme est enregistré dans une mémoire définit par le mathématicien John von Neumann :

« L'ensemble formé par l'unité arithmétique et logique, d'une part, et l'unité de
commande, d'autre part, constitue l'unité centrale ou processeur. L'ensemble des
composants physiques, appelé matériel (hardware), est commandé par un logiciel
(software), suite cohérente d'instructions et de données structurées stockées en
mémoire et exécutant un algorithme ».

Danièle, DROMARD, François, PÊCHEUX, « ORDINATEURS », Encyclopædia Universalis [en
l i g n e] , c o n s u l t é l e 2 9 s e p t e m b r e 2 0 2 1 . U R L :
http://www.universalis-edu.com/encyclopedie/ordinateurs/

Comme l’attestent les deux extraits précédents, le terme logiciel sert régulièrement de
traduction directe de software. Toutefois, l’anglicisme demeure d’usage dans certains cas,
probablement parce que l’informatique théorique se développe historiquement aux États-Unis.
Les termes du champ disciplinaire restent bien souvent ceux de la langue d’origine, l’anglais,
pour permettre un système lexical commun qui s’adosse à une syntaxe programmatique
dérivée de l’anglais. Les deux exemples suivants permettent d’illustrer différents contextes
d’utilisation du terme software. Pour la théoricienne et chercheuse Olga Goriunova, le terme
est utilisé pour qualifier par extension, tout un champ, comme le Software Art, qui provient de
pratiques techniques spécifiques.

« Le Software Art est devenu le domaine qui remettait en cause l’invisibilité et la
neutralité des logiciels, mettant en évidence les partis pris et discriminations
politiques, sociaux et culturels qui l’animent. Aujourd’hui, l’écriture ou l’utilisation
de logiciels sont loin de se réduire à une simple manipulation directe d’idées. Une
couche de programmation n’est pas transparente, elle peut restreindre ou élargir
le champ des possibles. »

Olga, GORIUNOVA, « L’histoire de Runme.org, répertoire de Software Art », dans
LARTIGAUD, David-Olivier (dir.), Art++, Orléans, Hyx, 2011, p. 117.

Dans cet extrait, notons que le terme software est utilisé en même temps que logiciel, en ce
que le premier permet de qualifier un domaine et le second un outil. Notre exemple suivant de
Jean Beaudrillard illustre que le terme de logiciel ne délimite pas exactement les mêmes
enjeux conceptuels que le software, et favorise en ce sens l’usage de ce dernier.

« Les prothèses de l'âge industriel sont encore externes, exotechniqnes, celles que
nous connaissons se sont ramifiées et intériorisées : ésoTechniques. Nous sommes
à l'âge des technologies douces, software génétique et mental. »

Jean, BAUDRILLARD, Simulacres et simulation, Paris, Éditions Galilée, 1981, p. 150.

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 3/6

2. De la langue d’origine au français
Le terme Software est donc emprunté de l’anglais. Les premières occurrences du terme
original font références au textile et se définit en opposition directe au hardware, en
substituant le préfixe hard- (dur, rigide) par soft- (mou, doux). Il est introduit pour la première
fois dans le champ sémantique de l’informatique en 1958 afin de qualifier les routines
programmatiques. Si, par ce déplacement du terme anglais vers le français, le préfixe persiste,
la matérialité du terme français software disparaît au profit d’une définition d’un concept
immatériel, symboliquement détaché du médium, comme le suggère John W. Tukey :

« Today the "software" comprising the carefully planned interpretive routines,
compilers, and other aspects of automative programming are at least as important
to the modern electronic calculator as its "hardware" of tubes, transistors, wires,
tapes and the like2. »

Dans son passage de l’anglais au français, le terme a conservé ce détachement en rapport à
son médium. Dès son apparition dans le champ lexical de l’informatique, la dichotomie instaure
une hiérarchie entre les machines et les logiques qui les gouvernent. Elle permettait
d’appréhender, avec un terme consacré, l’immatérialité des objets traités par les machines.
Cette dichotomie sémantique conditionne l’informatique théorique à aborder les machines par
la dualité suivante : l’abstrait versus le concret. Pourtant, des théoriciens et théoriciennes
émettent des hypothèses divergentes quant à la simplification linguistique au dualisme
conceptuel. Dans l’exemple suivant, cette dichotomie pourrait être réagencée en introduisant
davantage de termes pour requalifier d’autres aspects des machines (comme le contenu pour
T. Nielson).

« In publishing, the terms "hardware" and "software" have for some reason been
adopted as meaning objects (such as physical books) and content (what's printed in
them). This is unfortunate, since in computer-based text systems we must
distinguish between the hardware (computer and reading screen), software
(computer and display program) and content (what is read)3. »

Les contours du concept semblent donc variables selon les approches théoriques et le contexte
lequel le terme s’inscrit. Notre second exemple atteste que la stricte dichotomie
software/hardware ne relève pas de la nature des machines mais plutôt d’une détermination
pragmatique, c’est-à-dire d’un usage dépendant directement de son contexte. Autrement dit,
l’usage de cette distinction est convenable mais ne reposerait sur aucun fondement
ontologique.

« since programming can occur on many levels, it is useful to understand the
software/hardware dichotomy as a pragmatic distinction. […] This pragmatic view
of the sofware/hardware distinction makes the distinction both understandable and
useful. A myth concerning the software/hardware distinction can arise, however, if
the distinction is understood and taken to have more ontological significance than
it has4. »

Le terme software pourrait être traduit par mentaille. Il qualifie ce qui relève du mental, par
analogie à la quincaillerie, mot servant quelquefois de traduction au hardware.

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 4/6

3. Concept et problématisation
Selon James H. Moor, la dichotomie software/hardware est donc un mythe. De fait, elle ne
repose sur aucun fondement ontologique et n’a de sens que lorsqu’elle permet de clarifier les
tâches qui incombent à chaque corps de métiers impliqués dans la conception des systèmes
informatiques (développeurs, ingénieurs, designers d’interfaces etc.) Elle rend possible une
opposition entre un niveau symbolique (langage, programme, etc.) et un niveau matériel
(microcontrôleurs, circuits logiques etc.) Et cette distinction pragmatique est toute relative
puisque ce que certains qualifieraient de software, ce que d’autres qualifieraient de hardware.
En revanche, lorsque l’on s’interroge sur la définition du software dans son essence, il n’y a
pas lieu pour aucune distinction entre celui-ci et le hardware. Le software n’existe que par son
médium ; c’est en outre un des points de l’exposé de Friedrich Kittler5 allant dans le sens d’une
dépendance inextricable entre la machine et le software. L’articulation entre une logique
abstraite et un artefact serait l’implémentation6, autrement dit, le programme est
l’implémentation d’un algorithme dans un médium.

James H. Moor appuie son argument en soulignant que les premiers softwares sont hardwired,
c’est-à-dire, câblés directement dans le circuit, comme on peut le voir avec les programmes
des ENIAC Girls, et ne permettent en ce sens aucune définition ontologique du software. Il
approfondit son argument en émettant l’hypothèse suivante : même si l’on fixait une
délimitation entre le software et le hardware, il en reste qu’au niveau applicatif, le potentiel de
simulation du hardware par du software demeurerait puisque, dans ce cas, le hardware
pourrait être décrit en termes de fonction computable7. Si l’on revient à l’idée de la machine
universelle de Turing8, celle-ci repose sur la possibilité de simuler la machine par la machine,
et donc, sur la capacité des machines à « abstraire » des logiques hardware. Autrement dit, la
machine universelle n’est conceptuellement envisageable qu’à partir du moment où la
délimitation hardware/software n’est pas « figée » puisque le hardware peut théoriquement
relever d’une simulation software.

La substitution d’usage en français, dans de nombreux cas, par le terme logiciel souligne
davantage l’intrication des concepts, le terme provenant de logique et matérielle, proposé par
la Délégation à l’informatique en 1969 et adopté par l’Académie Française en 1972. Pourtant,
une distinction perdure en ce que l’usage de machines comme des outils techniques scindent
les domaines « d’expertises » : le hardware relèverait strictement de l’ingénierie tandis que le
software demeure encore flou quant à son champ, brouillant quelque peu les rôles des
designers/concepteurs quant à leur relation à l’ingénierie. Un designer de programmes
(software designer) ne limite pas sa pratique à une approche mentale des logiques
programmatiques mais transpose ces logiques en programme par le biais d’un langage, lui-
même dépendant d’une infrastructure technique matérielle.

La cohabitation, dans l’usage français courant, des termes software et logiciel illustre les
ambiguïtés des définitions : là où le logiciel qualifie davantage les applications utilisateurs
(avec des interfaces homme-machine), le software est défini comparativement au hardware, au
matériel et en ce sens encapsule tous les aspects des machines qui relèvent d’une logique
programmatique. Or, sur ce dernier point, le software se distingue du logiciel par sa capacité à
s’émanciper de la nécessité de la représentation, et en conséquence, de l’interface utilisateur.
Le software qualifie également les programmes qui font exclusivement interagir des machines
entre elles, ou d’autres programmes entre-eux. C’est sur ce point que le texte de Jack
Burnham, publié à l’occasion de l’exposition Software de 19709, aborde la résistance du
software à la représentation.

De même, Nurbay Irmak10 propose de penser le software comme un artefact abstrait. Il postule
que, si un artefact est la production intentionnelle d’une activité humaine, alors,
nécessairement, le software est un artefact. Toutefois, pour Irmak, en l’absence d’existence
spatio-temporelle dans un objet concret, le software ne peut en conséquence qu’être défini par
une forme d’artefact abstrait qui échappe aux définitions philosophique d’« objet abstrait » en

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 5/6

ce qu’il relève d’un « type », d’une « idée » qui survivrait dans l’esprit de l’auteur malgré une
potentielle destruction de toutes les implémentations dans du hardware. En conséquence, il
avance que la double nature du software est une contradiction. En ce sens, il s’oppose à la
définition de Timothy Colburn11 qui distingue l’abstraction concrète du software aux machines
constituées par des textes, en appuyant le fait que la double nature du software ne peut être
définit qu’en comprenant la nécessité simultanée d’un « médium de description » (langage
d’expression des algorithmes) et d’un « médium d’exécution » (un circuit hardware).

En comparant, entre autres, les définitions de Colburn, Irmak, Moor, Burnham, il ressort que le
terme software englobe des nombreux concepts liés aux machines computationnelles, sans
pour autant avoir une définition claire de ses contours, en particulier dans sa relation au
hardware. Qu’il s’agisse d’une définition supportant l’inséparabilité hardware/software ou
d’une définition argumentant en faveur d’une double nature, de façon transversale à ces
différentes approches, le concept de software s’inscrit dans un ensemble de termes connexes
du champ qui aident à circonscrire le software : il est distinct des programmes et des
algorithmes (on pourra se référer à la définition de Knuth12), de la data, du bruit, des patterns
d’informations (hypothèse soutenue par Peter Suber13), du texte, de la copie ou encore de
l’exécution même du software (séparation soulignée par Irmak14). Notons que la confusion
sémantique entre le software et les autres termes du champ est également présente pour
d’autres concepts dont la substitution est d’usage dans le langage courant, comme par
exemple programme et algorithme.

Kim SACKS, Maître de conférences en Design, Université de Strasbourg.

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 6/6

Nous traduisons : « Une définition simple du software est qu'il s'agit de l'ensemble des1.
instructions qui gouvernent un ordinateur pour effectuer une tâche spécifique. Chaque
Nous traduisons : « Aujourd'hui, le "software", qui comprend les routines2.
d'interprétation soigneusement planifiées, les compilateurs et d'autres aspects de la
programmation automatique, est au moins aussi important pour la calculatrice
électronique
Nous traduisons : « Dans le domaine de l'édition, les termes "3.
Nous traduisons : « étant donné que la programmation peut se faire à plusieurs4.
niveaux, il est utile de comprendre la dichotomie software/
Friedrich, KITTLER, « There Is No Software », Stanford Literature Review, 9:(1) (Spring5.
1992), pp 81-90.
Friedrich, KITTLER, « There Is No Software », The Truth of the Technological World:
Essays on the Genealogy of Presence, Redwood City, California, United States, Stanford
University Press, 2013, pp. 219-229.
William J., RAPAPORT, « Implementation Is Semantic Interpretation », The Monist,6.
82(1), 1999, pp. 109–130.
William J., RAPAPORT, « Implementation as Semantic Interpretation : Further Thoughts
», Journal of Experimental & Theoretical Artificial Intelligence, 17(4), 2005 pp.
385–417.
James H. MOOR, op. cit., p. 216. 7.
Alan TURING, « Computing Machinery and Intelligence », Mind, vol. LIX, no. 236,8.
Oxford UK, Oxford University Press, 1950.
Jack BURNHAM, « Notes on art and information processing », Software :Information9.
technology : its new meaning for art, New York: Jewish Museum, 1970
Nurbay, IRMAK, « Software is an Abstract Artifact », Grazer Philosophische Studien,10.
86(1), 2012, pp. 55-72.
Timothy R. COLBURN, « Software, Abstraction, and Ontology », The Monist, 82(1),11.
1999, pp. 3-19. doi:10.5840/monist19998215 et Timothy COLBURN & Gary SHUTE,
« Abstraction in Computer Science », Minds and Machines, 17(2), 2007, pp. 169-184.
doi:10.1007/s11023-007-9061-7
Donald E. KNUTH, The Art of computer programming volume I, Fundamental12.
Algorithms, (third edition), Massachusetts, Addison-Wesley, 1997, pp. 1-10.
Peter SUBER, « What Is Software? », Journal of Speculative Philosophy, 2(2), 1988, pp.13.
89-119.
Nurbay, IRMAK, op. cit. 14.

