Desigh in
TransSlation

Software
Kim Sacks

1. Définition du terme importé en francais

Le terme de « Sofware », parfois traduit en francais par « logiciel », demeure dans certains
contextes employé tel quel en francais. La définition qui suit permet de s’en faire une idée
générale de ce que le terme englobe.

« A simple definition of software is that it is the set of instructions that direct a
computer to do a specific task. Every machine has it'. »

Paul E., CERUZZI, A History of Modern Computing - 2nd ed., Cambridge, MA, The MIT Press,
2003, p. 80.

Pour approfondir cette définition succincte, rappelons que l'informatique, les computer
sciences et tous autres domaines associés aux machines computationnelles, séparent les
termes de software et de hardware. Ces deux notions sont intrinsequement liées et pensées
simultanément tout en donnant lieu a deux définitions autonomes et complémentaires. Cette
scission permet de percevoir les machines en distinguant symboliquement les entités concretes
(microcontroleurs, processeurs, RAM etc.) des entités abstraites (programmes, code sources,
algorithmes etc.) Le terme software qualifie I’ensemble de ces entités abstraites. Il se compose
des méthodes, des logiques, des programmes, qui gouvernent les machines. La notion est
souvent, si ce n’est exclusivement, expliqué en relation au hardware, qui sert de fondement
théorique pour circonscrire une définition négative : si le software en lui-méme est difficile a
délimiter, il est tout ce que le hardware n’est pas, ¢’est-a-dire tout ce qui n’est pas strictement
de la matiere sensible, concrete. C’est ce que confirme 1'occurrence suivante :

« SOFTWARE n.m. est emprunté (1966) a I'argot des ingénieurs américains, formé
plaisamment sur le modele de hardware « quincaillerie », par opposition de soft
« mou » a hard « dur ». Soft est d'origine germanique (néerlandais zacht). Cet
anglicisme, abrégé en soft n. m. (1971) et entré dans le vocabulaire international
de l'informatique, désigne I'ensemble des moyens d'utilisation, des programmes,
etc., d'un systeme informatique, par opposition aux éléments matériels.
L'équivalent frangais logiciel (1972), largement répandu, a pratiquement éliminé
software, mais soft et hard n.m. sont toujours en usage. »

Alain, REY (dir.), Dictionnaire Historique de la langue Francgaise, Paris, Dictionnaires Le
© Design in Translation

téléchargé le 2026-02-01 13:53:12, depuis le

216.73.216.158 1/6



Robert, 1998, t. 3, p. 3535.

En revanche, si nous nous affranchissons des définitions usuelles et des dictionnaires
étymologiques pour explorer les définitions encyclopédiques, nous nous rendons compte que le
terme software ne donne pas lieu a une entrée propre dans 1'Encyclopédie Universalis, alors
qu’il est présent dans plusieurs définitions périphériques comme celles de logiciels ou
systemes d’exploitation. Nous le retrouvons notamment au sein de la définition du mot
ordinateur pour décrire ’architecture von Neumann, soit le modéle des machines dont le
programme est enregistré dans une mémoire définit par le mathématicien John von Neumann :

« L'ensemble formé par I'unité arithmétique et logique, d'une part, et l'unité de
commande, d'autre part, constitue I'unité centrale ou processeur. L'ensemble des
composants physiques, appelé matériel (hardware), est commandé par un logiciel
(software), suite cohérente d'instructions et de données structurées stockées en
mémoire et exécutant un algorithme ».

Daniéle, DROMARD, Francois, PECHEUX, « ORDINATEURS », Encyclopeedia Universalis [en
ligne], consulté le 29 septembre 2021. URL
http://www.universalis-edu.com/encyclopedie/ordinateurs/

Comme l'attestent les deux extraits précédents, le terme logiciel sert régulierement de
traduction directe de software. Toutefois, I’anglicisme demeure d’usage dans certains cas,
probablement parce que l'informatique théorique se développe historiquement aux Etats-Unis.
Les termes du champ disciplinaire restent bien souvent ceux de la langue d’origine, 1’anglais,
pour permettre un systeme lexical commun qui s’adosse a une syntaxe programmatique
dérivée de I’anglais. Les deux exemples suivants permettent d’illustrer différents contextes
d’utilisation du terme software. Pour la théoricienne et chercheuse Olga Goriunova, le terme
est utilisé pour qualifier par extension, tout un champ, comme le Software Art, qui provient de
pratiques techniques spécifiques.

« Le Software Art est devenu le domaine qui remettait en cause I'invisibilité et la
neutralité des logiciels, mettant en évidence les partis pris et discriminations
politiques, sociaux et culturels qui I’'animent. Aujourd’hui, I’écriture ou I’utilisation
de logiciels sont loin de se réduire a une simple manipulation directe d’idées. Une
couche de programmation n’est pas transparente, elle peut restreindre ou élargir
le champ des possibles. »

Olga, GORIUNOVA, « L’histoire de Runme.org, répertoire de Software Art », dans
LARTIGAUD, David-Olivier (dir.), Art++, Orléans, Hyx, 2011, p. 117.

Dans cet extrait, notons que le terme software est utilisé en méme temps que logiciel, en ce
que le premier permet de qualifier un domaine et le second un outil. Notre exemple suivant de
Jean Beaudrillard illustre que le terme de logiciel ne délimite pas exactement les mémes
enjeux conceptuels que le software, et favorise en ce sens 1'usage de ce dernier.

« Les protheéses de ['dge industriel sont encore externes, exotechniqnes, celles que
nous connaissons se sont ramifiées et intériorisées : ésoTechniques. Nous sommes
a I'dge des technologies douces, software génétique et mental. »

Jean, BAUDRILLARD, Simulacres et simulation, Paris, Editions Galilée, 1981, p. 150.

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 2/6



2. De la langue d’origine au francais

Le terme Software est donc emprunté de 1’anglais. Les premieres occurrences du terme
original font références au textile et se définit en opposition directe au hardware, en
substituant le préfixe hard- (dur, rigide) par soft- (mou, doux). Il est introduit pour la premiere
fois dans le champ sémantique de l'informatique en 1958 afin de qualifier les routines
programmatiques. Si, par ce déplacement du terme anglais vers le francais, le préfixe persiste,
la matérialité du terme francais software disparait au profit d’'une définition d’'un concept
immatériel, symboliquement détaché du médium, comme le suggere John W. Tukey :

« Today the "software" comprising the carefully planned interpretive routines,
compilers, and other aspects of automative programming are at least as important
to the modern electronic calculator as its "hardware" of tubes, transistors, wires,
tapes and the like®. »

Dans son passage de l’anglais au francais, le terme a conservé ce détachement en rapport a
son médium. Des son apparition dans le champ lexical de I'informatique, la dichotomie instaure
une hiérarchie entre les machines et les logiques qui les gouvernent. Elle permettait
d’appréhender, avec un terme consacré, I'immatérialité des objets traités par les machines.
Cette dichotomie sémantique conditionne l'informatique théorique a aborder les machines par
la dualité suivante : ’abstrait versus le concret. Pourtant, des théoriciens et théoriciennes
émettent des hypotheses divergentes quant a la simplification linguistique au dualisme
conceptuel. Dans I’exemple suivant, cette dichotomie pourrait étre réagencée en introduisant
davantage de termes pour requalifier d’autres aspects des machines (comme le contenu pour
T. Nielson).

« In publishing, the terms "hardware" and "software" have for some reason been
adopted as meaning objects (such as physical books) and content (what's printed in
them). This is unfortunate, since in computer-based text systems we must
distinguish between the hardware (computer and reading screen), software
(computer and display program) and content (what is read)’. »

Les contours du concept semblent donc variables selon les approches théoriques et le contexte
lequel le terme s’inscrit. Notre second exemple atteste que la stricte dichotomie
software/hardware ne reléve pas de la nature des machines mais plutot d'une détermination
pragmatique, c’est-a-dire d'un usage dépendant directement de son contexte. Autrement dit,
l'usage de cette distinction est convenable mais ne reposerait sur aucun fondement
ontologique.

« since programming can occur on many levels, it is useful to understand the
software/hardware dichotomy as a pragmatic distinction. [...] This pragmatic view
of the sofware/hardware distinction makes the distinction both understandable and
useful. A myth concerning the software/hardware distinction can arise, however, if
the distinction is understood and taken to have more ontological significance than
it has®. »

Le terme software pourrait étre traduit par mentaille. Il qualifie ce qui releve du mental, par
analogie a la quincaillerie, mot servant quelquefois de traduction au hardware.

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 3/6



3. Concept et problématisation

Selon James H. Moor, la dichotomie software/hardware est donc un mythe. De fait, elle ne
repose sur aucun fondement ontologique et n’a de sens que lorsqu’elle permet de clarifier les
taches qui incombent a chaque corps de métiers impliqués dans la conception des systemes
informatiques (développeurs, ingénieurs, designers d’interfaces etc.) Elle rend possible une
opposition entre un niveau symbolique (langage, programme, etc.) et un niveau matériel
(microcontroleurs, circuits logiques etc.) Et cette distinction pragmatique est toute relative
puisque ce que certains qualifieraient de software, ce que d’autres qualifieraient de hardware.
En revanche, lorsque 1'on s’interroge sur la définition du software dans son essence, il n'y a
pas lieu pour aucune distinction entre celui-ci et le hardware. Le software n’existe que par son
médium ; c’est en outre un des points de I’exposé de Friedrich Kittler’ allant dans le sens d’une
dépendance inextricable entre la machine et le software. L’articulation entre une logique
abstraite et un artefact serait I'implémentation®, autrement dit, le programme est
I'implémentation d'un algorithme dans un médium.

James H. Moor appuie son argument en soulignant que les premiers softwares sont hardwired,
c’est-a-dire, cablés directement dans le circuit, comme on peut le voir avec les programmes
des ENIAC Girls, et ne permettent en ce sens aucune définition ontologique du software. Il
approfondit son argument en émettant 1’hypothése suivante : méme si I’on fixait une
délimitation entre le software et le hardware, il en reste qu’au niveau applicatif, le potentiel de
simulation du hardware par du software demeurerait puisque, dans ce cas, le hardware
pourrait étre décrit en termes de fonction computable’. Si I’on revient a 'idée de la machine
universelle de Turing®, celle-ci repose sur la possibilité de simuler la machine par la machine,
et donc, sur la capacité des machines a « abstraire » des logiques hardware. Autrement dit, la
machine universelle n’est conceptuellement envisageable qu’a partir du moment ou la
délimitation hardware/software n’est pas « figée » puisque le hardware peut théoriquement
relever d'une simulation software.

La substitution d’usage en francais, dans de nombreux cas, par le terme logiciel souligne
davantage l'intrication des concepts, le terme provenant de logique et matérielle, proposé par
la Délégation a I'informatique en 1969 et adopté par I’Académie Francgaise en 1972. Pourtant,
une distinction perdure en ce que 'usage de machines comme des outils techniques scindent
les domaines « d’expertises » : le hardware reléverait strictement de 1'ingénierie tandis que le
software demeure encore flou quant a son champ, brouillant quelque peu les roles des
designers/concepteurs quant a leur relation a l'ingénierie. Un designer de programmes
(software designer) ne limite pas sa pratique a une approche mentale des logiques
programmatiques mais transpose ces logiques en programme par le biais d’un langage, lui-
méme dépendant d’'une infrastructure technique matérielle.

La cohabitation, dans l'usage francais courant, des termes software et logiciel illustre les
ambiguités des définitions : la ou le logiciel qualifie davantage les applications utilisateurs
(avec des interfaces homme-machine), le software est défini comparativement au hardware, au
matériel et en ce sens encapsule tous les aspects des machines qui relevent d’une logique
programmatique. Or, sur ce dernier point, le software se distingue du logiciel par sa capacité a
s’émanciper de la nécessité de la représentation, et en conséquence, de l'interface utilisateur.
Le software qualifie également les programmes qui font exclusivement interagir des machines
entre elles, ou d’autres programmes entre-eux. C’est sur ce point que le texte de Jack
Burnham, publié a l’occasion de l’exposition Software de 1970°, aborde la résistance du
software a la représentation.

De méme, Nurbay Irmak'’ propose de penser le software comme un artefact abstrait. Il postule
que, si un artefact est la production intentionnelle d’une activité humaine, alors,
nécessairement, le software est un artefact. Toutefois, pour Irmak, en I'absence d’existence
spatio-temporelle dans un objet concret, le software ne peut en conséquence qu’étre défini par
une forme d’artefact abstrait qui échappe aux définitions philosophique d’« objet abstrait » en

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 4/6



ce qu’il releve d'un « type », d’'une « idée » qui survivrait dans I’esprit de I’auteur malgré une
potentielle destruction de toutes les implémentations dans du hardware. En conséquence, il
avance que la double nature du software est une contradiction. En ce sens, il s’oppose a la
définition de Timothy Colburn'' qui distingue I'abstraction concréte du software aux machines
constituées par des textes, en appuyant le fait que la double nature du software ne peut étre
définit qu’en comprenant la nécessité simultanée d’'un « médium de description » (langage
d’expression des algorithmes) et d'un « médium d’exécution » (un circuit hardware).

En comparant, entre autres, les définitions de Colburn, Irmak, Moor, Burnham, il ressort que le
terme software englobe des nombreux concepts liés aux machines computationnelles, sans
pour autant avoir une définition claire de ses contours, en particulier dans sa relation au
hardware. Qu'il s’agisse d'une définition supportant I'inséparabilité hardware/software ou
d’une définition argumentant en faveur d’une double nature, de facon transversale a ces
différentes approches, le concept de software s’inscrit dans un ensemble de termes connexes
du champ qui aident a circonscrire le software : il est distinct des programmes et des
algorithmes (on pourra se référer a la définition de Knuth'?), de la data, du bruit, des patterns
d’informations (hypothése soutenue par Peter Suber'’), du texte, de la copie ou encore de
'exécution méme du software (séparation soulignée par Irmak'®). Notons que la confusion
sémantique entre le software et les autres termes du champ est également présente pour
d’autres concepts dont la substitution est d’usage dans le langage courant, comme par
exemple programme et algorithme.

Kim SACKS, Maitre de conférences en Design, Université de Strasbourg.

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 5/6



Nous traduisons : « Une définition simple du software est qu'il s'agit de 1'ensemble des
instructions qui gouvernent un ordinateur pour effectuer une tache spécifique. Chaque

. Nous traduisons : « Aujourd'hui, le "software", qui comprend les routines

d'interprétation soigneusement planifiées, les compilateurs et d'autres aspects de la
programmation automatique, est au moins aussi important pour la calculatrice
électronique

Nous traduisons : « Dans le domaine de 1'édition, les termes "

4. Nous traduisons : « étant donné que la programmation peut se faire a plusieurs

niveaus, il est utile de comprendre la dichotomie software/

. Friedrich, KITTLER, « There Is No Software », Stanford Literature Review, 9:(1) (Spring

1992), pp 81-90.

Friedrich, KITTLER, « There Is No Software », The Truth of the Technological World:
Essays on the Genealogy of Presence, Redwood City, California, United States, Stanford
University Press, 2013, pp. 219-229.

. William J., RAPAPORT, « Implementation Is Semantic Interpretation », The Monist,

82(1), 1999, pp. 109-130.

William J., RAPAPORT, « Implementation as Semantic Interpretation : Further Thoughts
», Journal of Experimental & Theoretical Artificial Intelligence, 17(4), 2005 pp.
385-417.

7. James H. MOOR, op. cit., p. 216.

10.

11.

12.

13.

14.

. Alan TURING, « Computing Machinery and Intelligence », Mind, vol. LIX, no. 236,

Oxford UK, Oxford University Press, 1950.

. Jack BURNHAM, « Notes on art and information processing », Software :Information

technology : its new meaning for art, New York: Jewish Museum, 1970

Nurbay, IRMAK, « Software is an Abstract Artifact », Grazer Philosophische Studien,
86(1), 2012, pp. 55-72.

Timothy R. COLBURN, « Software, Abstraction, and Ontology », The Monist, 82(1),
1999, pp. 3-19. d0i:10.5840/monist19998215 et Timothy COLBURN & Gary SHUTE,
« Abstraction in Computer Science », Minds and Machines, 17(2), 2007, pp. 169-184.
d0i:10.1007/s11023-007-9061-7

Donald E. KNUTH, The Art of computer programming volume I, Fundamental
Algorithms, (third edition), Massachusetts, Addison-Wesley, 1997, pp. 1-10.

Peter SUBER, « What Is Software? », Journal of Speculative Philosophy, 2(2), 1988, pp.
89-119.

Nurbay, IRMAK, op. cit.

© Design in Translation
téléchargé le 2026-02-01 13:53:12, depuis le
216.73.216.158 6/6



